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Abstract We reformulate and discuss a previously pro-

posed variational numerical technique for the computation

of dispersion coefficients. The method extends the Full CI

idea to the perturbation equation for the intermolecular

interaction, by expanding the perturbative solution in a

small number of tensor products of suitably chosen Full CI

vectors. Some new expansion vectors are proposed and

their convergence properties are tested by performing

computations on HF and H2O. Last, a natural state analysis

of the solution is performed via an orthogonal transfor-

mation of the original expansion vectors and it is found that

a single couple of natural states strongly dominates the

expansion.

1 Introduction

The dispersion interaction of two atoms or molecules at

large distance can be computed by perturbation theory

according to the classical treatment of London [1, 2], see

[3, 4] for an exaustive bibliography. In the context of

ab initio calculations, the standard approach is via

numerical quadrature of the Casimir-Polder integral of the

imaginary frequency polarizabilities [5, 6]. In this paper we

review and discuss a numerical variational technique we

have used in the last years, and present some new results.

We consider two neutral atoms or molecules at large dis-

tance interacting via Coulomb forces, expand the Coulomb

A–B interaction in multipoles and, for sake of simplicity,

consider only the dipole-dipole dispersion contribution. One

has to solve a first order perturbative equation in the tensor

product space of the two molecules A, B:

ðĤA � EA
0 Þ þ ðĤB � EB

0 Þ
� �

UAB
1ab

¼ EA
1a � l̂A

a

� �
UA

0 EB
1b � l̂B

b

� �
UB

0 ð1Þ

where, for each molecule, Ĥ; E0; U0; l̂ denote the ham-

iltonian operator, the ground state energy, the ground state

wavefunction and the dipole operator, respectively. Dif-

ferent cartesian components of the latter are labelled by

indexes a, b, …. The quantities E1a
A , E1b

B are the first order

perturbative corrections due to l̂A
a ; l̂B

b , respectively:

EA
1x ¼ hUA

0 jl̂A
x jUA

0 i.
The solution U1ab

AB of Eq. 1 determines the dispersion

contribution to the first order perturbative correction to the

zeroth order wavefunction U0
AU0

B of the interacting mole-

cules, the other contributions being the induction terms, not

considered here. Several formal solutions to Eq. 1 are

known; here we quote the following:

• sum-over-states expansion of the solution (London):

UAB
1ab ¼

X

i [ 0; j [ 0

hiAjlA
a j0AihjBjlB

b j0Bi
EA

i � EA
0 þ EB

j � EB
0

jiAijjBi ð2Þ

where ji i; jj i denote eigenvectors of the interacting mole-

cules. The sum excludes the ground state eigenvectors of both

molecules and this implies a kind of ‘strong orthogonality’

of U1ab
AB to both U0

A and U0
B; see Appendix 1 for details.
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• Casimir-Polder integral representation:

UAB
1ab ¼

2

p

Zþ1

0

ðĤA � EA
0 Þ

ðĤA � EA
0 Þ

2 þ x2
EA

1 � l̂A
a

� �
UA

0

� ðĤB � EB
0 Þ

ðĤB � EB
0 Þ

2 þ x2
EB

1 � l̂B
b

� �
UB

0 dx ð3Þ

• Laplace-type integral representation:

UAB
1ab ¼ �

Zþ1

0

e�tðĤA�EA
0
Þ EA

1 � l̂A
a

� �
UA

0

� e�tðĤB�EB
0
Þ EB

1 � l̂B
b

� �
UB

0 dt ð4Þ

as it can be verified by direct substitution. The convergence

of the integral is ensured because Ĥ � E0 [ 0 for both

molecules when in the ground states.

In this paper we discuss a numerical method of solution

of Eq. 1, involving an expansion of U1ab
AB in products of

Slater determinants of the two separate molecules. Once

U1ab
AB is available, the dispersion energy can be obtained by

computing matrix elements of the form:

abjabh i� ¼ EA
1 � l̂A

a

� �
UA

0 EB
1 � l̂B

b

� �
UB

0 jUAB
1ab

� �
� ð5Þ

where the bra-ket notation hji� in Eq. 5 denotes integration

over the configuration space of both molecules.

We remind that the standard Casimir-Polder evaluation

of the dispersion coefficients is performed via the equation:

habjabi� ¼
1

2p

Zþ1

0

aaaðixÞabbðixÞ dx ð6Þ

involving the polarizabilities a at imaginary frequencies:

aaaðixÞ ¼ 2
X

i [ 0

h0jlajiihijlaj0iðEi � E0Þ
ðEi � E0Þ2 þ x2

ð7Þ

where now h j i refers to a single molecule space. The

integral in Eq. 6 is usually evaluated by numerical quad-

rature [5, 6] by computing values of a(ix) at integration

points ix1, ix2, …. In a CI context, the computation of

a(ix) is performed via the solution of systems of linear

equations, see, e.g. [7]. An interesting alternative is the

analytical integration of suitable functions interpolating

a(ix) in [0,?), [8, 9].

2 Outline of the method

In this section we reformulate the method originally pro-

posed in [10]. In the Full CI approach we expand the

wavefunctions U0
A, U0

B of the interacting molecules A, B in

Slater determinants Sk
A, Sl

B and compute the ground state

energies E0
A, E0

B. These Slater determinants define the Full

CI spaces FCIA, FCIB; both spaces have huge dimension-

ality, several millions, even some billions [11]. We now

expand the solution of Eq. 1 in products of the same Slater

det.s of FCIA, FCIB spaces respectively as:

UAB
1ab �

X

k;l

Xk;l SA
k SB

l ; S ¼ Slater det: ð8Þ

We arrange the expansion coefficients Xk,l as a rectangular

matrix, where the row index k and the column index l refer

to molecules A and B, respectively. We also expand the

r.h.s. of Eq. 1 in the Slater determinant basis:

EA
1 � l̂A

a

� �
UA

0 �
X

k

qA
k SA

k ð9Þ

EB
1 � l̂B

b

� �
UB

0 �
X

l

qB
l SB

l ð10Þ

The first order equation (1) can be recast in the form:

XðHA � EA
0 Þ þ ðHB � EB

0 ÞXþ qBðqAÞT ¼ 0 ð11Þ

where now HA, HB formally denote Full CI hamiltonian

matrices, and E0
A, E0

B the ground state energies. The vectors

qH, H = A, B are the Full CI representation of

ðEH
1s � l̂sÞUH

0 , and they are exactly those required for

polarizability computations of the separate molecules.

They are computed from the ground state eigenvector and

the matrix of the dipole operator [7].

Equation 11 is a Sylvester equation; the particular case

(HB - E0
B) = (HA - E0

A) is called Lyapunov equation.

Such equations have been extensively studied in the field of

optimal control theory, see [12]. Equation 11 is the pro-

jection of Eq. 1 in the tensor product space FCIA � FCIB

and, needless to say, its exact solution will coincide with

the exact solution of Eq. 1 only in the limit of complete and

therefore infinite Full CI expansion for both molecules.

Our approach is to look for a variational solution of Eq.

11 that can be efficiently implemented in a computer code

and to provide error bounds for the computed matrix ele-

ments. It is immediately realized that the number of

elements Xk,l is exceedingly large, being the product of the

dimensionalities of two Full CI spaces. However we can

get a manageable representation of X by introducing suit-

able expansion vectors in Full CI spaces of A and B,

respectively: zi
A, i = 1, …, kA, zj

B, j = 1, …, kB such that

the huge array X can be approximated by a small number

of products of the type:

X ¼
X

i;j

ci;jz
B
j ðzA

i Þ
T ¼ ZBcðZAÞT ð12Þ

where the vectors zi
A, zj

B are orthogonal to the ground state

Full CI eigenvector of molecule A and B, and the coeffi-

cients ci,j are to be determined by a variational criterion.

Since the number of products in Eq. 12 determines the rank
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of the matrix X, the latter can be called a low-rank solution.

It is convenient to gather the expansion vectors as columns

of rectangular matrices ZA, ZB, respectively. These will be

tall matrices, their number of rows being the dimension-

ality of the Full CI space. Provided we can find effective

expansion vectors, the perturbative problem in the huge

tensor product space FCIA � FCIB requires the handling of

Full CI vectors only and can therefore be implemented in

much the same way as Full CI for single molecules.

Abelian symmetry of the interacting molecules is also

easily implemented. The Full CI space of each molecule

A, B, is the direct sum of subspaces FCIs
H where H = A, B

and s labels spacial symmetries. Equation 11 is trivially

projected in the product space FCIA
a � FCIB

b ; therefore the

expansion vectors for each molecule are actually symmetry

adapted and should be given a symmetry label, zis
H. For

sake of simplicity, in the following we omit the symmetry

indexes.

As discussed in [10], the coefficients ci, j can be deter-

mined either by Hylleraas’ variational principle or by

minimization of the residual norm in the tensor product

space FCIA � FCIB.

The final equation for the optimal coefficient matrix c by

Hylleraas’ principle is a small size kA 9 kB generalized

reduced Sylvester equation [10]:

SBcH1A þH1BcSA þ b1Bðb1AÞT ¼ 0 ð13Þ

where the following reduced matrices are involved:

SH ¼ ðZHÞT ZH;

H1H ¼ ðZHÞTðĤH � EH
0 ÞZH;

b1H ¼ ðZHÞTÞqH;

H ¼ A;B

for each molecule, respectively. A somewhat more com-

plicated, but similar, equation is obtained by the minimal

norm criterion [10]. As concerns the computer implemen-

tation, we found convenient to work with orthonormalized

expansion vectors ðZHÞT ZH ¼ IH; therefore matrices SA,

SB disappear from Eq. 13. The reduced hamiltonian

matrices H1H in Eq. 13 are computed using the standard

technology of direct CI.

The matrix equation (13) is easily solved by trans-

forming it in a system of kA kB linear equations (small 9

small!). The time consuming part of the procedure is the

computation of the expansion vectors; the reduced matrices

and Eq. 13 require a comparatively negligible time.

The matrix elements needed for the computation of

dispersion constants are obtained from the Full CI version

of Eq. 5:

hla
Alb

Bjla
Alb

Bi� ¼ TrfXT qBðqAÞTg
¼ TrfðbAÞT cT bBg ð14Þ

We remark that the matrices appearing in Eq. 13 are

obtained from calculations on individual molecules and

therefore can be used to compute several different

interactions. Once we have chosen the expansion vectors

ZA, ZB for two molecules A, B, we compute for each

molecule a set of reduced matrices according to the

symmetries, and we can set up the reduced Sylvester

equations (11) for all the different interactions

Ax � Ax; Ax � Ay; Ax � Az; . . .;Ax � Bx; . . .;Bz � Bz.

As a further remark, if one diagonalizes the reduced

hamiltonian matrices appearing in Eq. 13

ðUHÞT H1HUH ¼ Diagð�H1 ; �H1 ; . . .Þ
ðUHÞT S1HUH ¼ IH ¼ Diagð1; 1; . . .Þ

ð15Þ

one gets a pseudo spectrum of excitation energies e1
H, e1

H,

…. The present method of solution is actually mathemat-

ically equivalent to the London Eq. 2 using as expansion

pseudostates the Full CI vectors provided by the columns

of the matrices UHZH.

2.1 Convergence check and error bounds

The accuracy of an approximate solution X, and, conse-

quently, the convergence of the method is measured by the

norm of the residual of Eq. 11, given by:

R ¼ XðHA � EA
0 Þ þ ðHB � EB

0 ÞXþ qBðqAÞT ð16Þ

Rk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrfRT Rg

q
ð17Þ

The norm of the residual cannot be computed by

straightforward summation of the squares if its individual

components because of the huge number of them, given by

the product of the dimensions of the Full CI spaces of the

interacting molecules. However, as shown in [10], for an X

given by Eq. 12 and orthonormal expansion sets ZA, ZB one

has:

Rk k2 ¼ ðbBÞT bBðbAÞT bA þ 2Trfðb2BÞT c b1Ag
þ 2Trfðb1BÞT c b2Ag þ TrfcT H2B cg
þ Trfc H2A cTg þ 2TrfðH1BÞT c H1AcTg ð18Þ

where

H2H ¼ ðZHÞTðĤH � EH
0 Þ

2ZH;

b2H ¼ ðZHÞTðĤH � EH
0 ÞqH;

H ¼ A;B

The additional matrices appearing in Eq. 18 are

computed from the same vectors needed for the matrices

in Eq. 13 and the additional computer time required is

negligible. It should be pointed out that the quantities in

Eq. 18 have mixed signs and this introduces some loss of

accuracy in the computation of Rk k2
. We empirically
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assumed this loss to be of the order &10-12 for our double

precision computations with a machine precision of 10-14.

As concerns the accuracy of the matrix elements com-

puted by Eq. 14, when X is obtained from Hylleraas’

variational principle, we get lower bounds to ‘diagonal’

matrix elements:

hla
Alb

Bjla
Alb

Bi� � Mfc ð19Þ

where Mfc represents the exact value for a fully converged

solution Xfc with a residual norm strictly vanishing. Lower

bound formulae to second order perturbative corrections

[13] applied to Eq. 11 provide upper bounds to the same

matrix elements:

Mfc�hla
Alb

Bjla
Alb

Bi� þ
kRk2

Eexc � E0

ð20Þ

where Eexc is the first excited level (of appropriate sym-

metry) of the joint non-interacting system A-B. Here we

have one of the advantages of the present method over the

standard Casimir-Polder procedure, where the accuracy of

the numerical integration can hardly be checked.

2.2 Choice of the expansion sets

In this section we show how to get effective vectors to

expand the solution of Eq. 11. It is understood that the

vectors, once generated with the prescriptions here

described, are always orthonormalized and also orthogo-

nalized to the ground state of the molecule, as implied by

Eq. 2; see Appendix 1 for details.

In our past computations [14, 15], we have used the

following two sets. The first one was suggested by the

Casimir-Polder procedure. To compute the polarizability at

an imaginary frequency by Full CI one has to solve a set of

first order perturbative equations of the type:

ðHH � EH
0 þ ixÞzH ¼ qH; H ¼ A;B ð21Þ

The Full CI solutions obtained in this way for x = x1,

x2, … are natural choices for the expansion vectors zj
A,

j = 1, …, kA, zj
B, j = 1, …, kB. As already pointed out in

[10], the numerical Casimir Polder with integration points

xk and weights wk is a particular case of Eq. 8 where the

expansion set is given by the real parts of the solutions of

Eq. 21 and assuming a diagonal matrix of coefficients:

cik ¼ wk

2pdik. Therefore the coefficients are not variationally

optimized. In this connection we should also remind that a

perturbative solution at imaginary frequency is a complex

Full CI vector so its real and imaginary parts provide two

independent expansion vectors that can be included in the

basis [10].

A second choice was suggested by the Cauchy moment

expansion of the polarizability in powers of the frequency

x. A CI computation of the Cauchy moments implies the

solution of PT-like equations in FCIA and FCIB spaces at

x = 0:

ðH� E0Þzn ¼ zn�1; n ¼ 1; 2; . . . and z0 ¼ q ð22Þ

In the present study we consider some other

possibilities. Expanding the exponential of Eq. 4 in

McLaurin series suggests the set:

ðH� E0Þnq ¼ zn; n ¼ 1; 2; . . . ð23Þ

We call this the power set, P. The generation of the vectors

of Eq. 23 is not costly in computer time, but on the other

hand the convergence is rather slow. Therefore this set

requires a large amount of disk space to keep all the vectors

needed for a satisfactory convergence and this is uncon-

venient when dealing with large Full CI expansions.

Another set is here investigated. It is suggested by the

following arguments. By assuming a single product or

rank-1 expansion of the solution X ¼ zAc1zB and using the

Hylleraas’ variational principle it can be shown that the

optimal vectors are given by the solutions of the following

equations [16]:

ðHA � EA
0 þ xBÞzA ¼ qA

ðHB � EB
0 þ xAÞzB ¼ qB

ð24Þ

where xA, xB are real, positive quantities to be determined

by a nonlinear minimization procedure. The approximation

provided by the simple product is surprisingly good

([99%), but the determination of the x’s is very time

consuming, so the method is not practical. This suggests

that a good expansion set for the solution Eq. 12 should

include solutions of Eq. 24 at suitably chosen values x1,x2,

…. Since a variational choice of such values of x is

unfeasible, we considered the following procedure. We

perform a preliminary cheap computation with a small

power set (23). The resulting approximate solution is

analysed in natural states as described in Sect. 4 and from

them we get the values of xk as the excitation energies of

the first natural states as detailed in Eq. 35. We call this the

solution set S. As a cheaper variant we can use the first

excitation energies x1 \x2 \ ��� obtained from a small

Lanczos iteration starting from qB.

Since these values are certainly non-optimal, we mimic

the possibility of adjusting the values of the x’s by also

including the derivatives of zA(x) w.r.t. x. By using the

formula for the n-th derivative of a product one gets from

Eq. 24:

ðH� E0 þ xÞd
nzA

dxn
þ n

dn�1zA

dxn�1
¼ 0 ð25Þ

Therefore the expansion vectors zk,n
A are defined by the

following equation:

268 Theor Chem Acc (2009) 123:265–272
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ðH� E0 þ xkÞzA
k;n ¼ zA

k;n�1;

k ¼ 1; 2; . . .; n ¼ 1; 2; . . .; and zA
k;0 ¼ qA ð26Þ

where k labels a value of x and n a derivative order. As

concerns the computational cost, each vector zk,n
A of Eq. 26

requires roughly one half of the computer time needed by a

single value of polarizability at imaginary frequency.

Indeed the system of linear equations (26) is well condi-

tioned because xk is greater than the first excitation energy

of H, and the conjugate gradient converges fast.

3 Test calculations

The properties of the method with the new expansion set

are here illustrated by test Full CI calculations on HF and

water. We choosed the Z3 AO bases of Benkova et al. [17]

because they are specially designed for polarizability cal-

culations and, due to their reduced size, allow for

reasonable Full CI expansions.

As far as HF is concerned, the details of the Full CI

calculation are reported in Table 1. Basis set and geometry

are the same used in [16]: the bond length is 1.8012 bohr,

the AO basis is the 24 CGTO Z3 6s3p/3s1p of Benkova

et al. [17], and the 1s2 of fluorine is frozen. The dimension

of the Full CI space is about 20 million Slater determinants

in each symmetry class (C2v).

As concerns the Full CI calculations on water (Table 2),

we optimized the geometry at RCCSD(T)/VDZ level and

got an O–H bond length of 1.889 bohr and an HOH angle

of 104.099�. The symmetry group is C2v with the y axis

perpendicular to the molecular plane and the z axis coin-

cident with C2. After a SCF calculation on the molecule,

we froze the 1s2 pair of oxygen so our Full CI involves 8

correlated electrons in 29 orbitals and about 141 million

Slater determinants per symmetry class.

The expansion sets for the dispersive computation

include six vectors of the type:

zi ¼ ðH� E0 þ xkÞ�iq; k ¼ 1; 2; i ¼ 1; 2; 3 ð27Þ

for each symmetry of both molecules; the values of xk are

given in Table 3. According to the remarks given in Sect. 2.2,

such a calculation with six vectors of type (27) requires

roughly the computer time needed by a 3–4 points Casimir-

Polder procedure, while the standard number of integration

points is 8 to 16 imaginary frequencies [5, 6].

Results of the computation of dispersive matrix ele-

ments for HF and H2O are reported in Table 4. From these

values we computed the dispersion coefficients C6
00000

using the formulae given in Appendix 2 and the dimen-

sionless anisotropy factors computed according to [18]:

cijklm
6 ¼ Cijklm

6

C00000
6

ð28Þ

Given the error bounds reported in Table 4, we get an

accuracy B0.5 9 10-7 on the values reported in Table 5.

The comparison with literature values shows satisfactory

agreement for the isotropic coefficient C6
00000 and dis-

crepancies for the anisotropic factors. In this connection it

should be reminded that our Full CI computations are

performed using small size AO basis sets, not including

as many polarization functions as the larger sets used in

[18–20].

4 Natural states analysis of the solution

Thirty years ago Kutzelnigg and Maeder [21–24] proposed

a ‘natural expansion’ of the perturbative solution U1ab
AB of

Eq. 1 of the form:

Table 1 Details of the Full CI calculation on HF

State NFCI E DE

X1R? 19,602,925 -100.18068391 0.0

11R? 19,602,925 -99.64196314 0.53872077

11P 19,602,700 -99.79891313 0.38177078

Dipole Polarizability, a0
3

0.680820 a\ = 5.267232, ak = 6.141682

NFCI is the number of Slater determinants of the Full CI expansion, E
is the total energy and DE the transition energy in hartrees

Table 2 Results of the Full CI calculation for water

State NFCI E DE

11A1 141,140,491 -76.18750732 0.0

21A1 141,140,491 -75.83391284 0.35359448

11B1 141,126,410 -75.76699190 0.42051542

11B2 140,924,450 -75.92135832 0.26614900

Dipole Polarizability, a0
3

0.308341 axx = 10.676927 ayy = 9.982857 azz = 9.890958

NFCI is the number of Slater determinants of the Full CI expansion,

E is the total energy and DE the transition energy in hartrees. The y
axis is perpendicular to the molecular plane and the z axis coincides

with C2

Table 3 Values of xk (hartrees) used to compute the expansion

vectors for HF and H2O

Molecule Symmetry x1 x2

HF k 0.88016020 1.18381439

HF \ 0.91737303 0.86934192

H2O x 0.70660563 1.04742176

H2O y, \ 0.67737888 0.71488351

H2O z = C2 0.69966900 0.90364375
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UAB
1ab ¼

X

k

/A
k /B

k ð29Þ

where to each natural state /k
A of molecule A corresponds

an associated natural state /k
B of molecule B. Kutzelnigg

and Maeder argued that such an expansion should have

good convergence properties, and this was indeed verified

in a number of simple cases [21]. The Ansatz (1) can be

investigated at the Full CI level as follows. Given a

converged solution to Eq. 11, we can reduce to diagonal

form the matrix c of the coefficients via a singular value

decomposition (SVD) performed with two orthogonal

matrices: UA, UB:

c ¼ UBKðUAÞTK ¼ Diagðk1; k2; . . .Þ ð30Þ

X ¼
X

k

½ZBUB�kkk½ZAUA�Tk k ¼ 1; . . .; rankðcÞ ð31Þ

where we have used the notation [M]k for the column k of

matrix M. The couple of corresponding vectors yk
A, yk

B

given by

yH
ik ¼

X

j

ZH
i;jU

H
j;k; H ¼ A;B ð32Þ

associated to each singular value kk provide the expansion

coefficients of the natural states in Slater determinants:

/H
k ¼

ffiffiffiffiffi
kk

p X

l

SH
i yH

ik ; H ¼ A;B ð33Þ

It is found that the singular values k1 C k2 C, … , kk,

… , C 0 decay very rapidly with the index k in such a way

that one couple strongly dominates the expansion, i.e. to a

very good approximation the solution X is given by a

product of one vector [FCIA by a single vector [ FCIB.

A typical result is shown in Table 6. This behaviour has

been observed for Lyapunov equations in control theory

[25], and it is still the subject of investigation in that field.

We notice that by retaining only the dominating term in

expansion (29) we get a rank-1 approximation to the

solution X similar to that discussed in [16]. The difference

between these two rank-1 approximations lies in the

approximation criteria: the present one minimizes the

(euclidean) distance from the solution X, while that of [16]

fulfills Hylleraas’ variational principle and minimizes the

second order perturbative correction i.e. it maximizes the

dispersion energy.

In the same Table 6 we also report the contribution Dk

of each natural state yk to the dispersion matrix element,

and the associated excitation energy xk. The former is

obtained by combining Eqs. 14 and 30:

hl1
Al2

Bjl1
Al2

Bi ¼
X

k

ðyA
k Þ

TkkyB
k

¼
X

k

Dk k ¼ 1; . . .; rankðcÞ ð34Þ

As concerns the associated excitation energy xk, one

has:

xH
k ¼
ðykÞTðHH � EH

0 Þyk

ðykÞT yk

ð35Þ

As previously stated in Sect. 2.2, values of x computed

with a low-quality ‘power’ expansion set are used to define

the expansion set S.

Table 4 Matrix elements for HF-HF, HF-H2O, and HF-H2O dispersion interactions and the value of Rk k2=ðEexc � E0Þ (in parentheses), see

Eq. 20

HFk HF\ H2O\ H2Ox H2Oz

HFk 3.89308008 (3.9E-11) 3.36792130 (2.8E-09) 5.36943220 (8.7E-08) 6.053566848 (0.79E-10) 5.48582529 (6.7E-12)

HF\ 2.91487260 (1.1E-08) 4.63565401 (3.4E-07) 5.226619927 (0.16E-08) 4.73694259 (5.5E-08)

H2O\ 7.51022647 (2.2E-08) 8.449315606 (0.41E-08) 7.66018202 (6.4E-08)

H2Ox 9.513048175 (0.53E-10) 8.621328685 (0.12E-09)

H2Oz 7.81508267 (2.0E-09)

The H2O molecule lies in the xz plane, and the z axis coincides with C2. All quantities are in a.u.

Table 5 Van der Waals dispersion coefficients C6
00000 (a.u.) and

dimensionless anisotropy factors c6
ijklm (see Eq. 28)

H2O-H2O HF-H2O HF-HF References

C6
00000 49.5333400 30.7381719 19.3495040 This work

c6
20002 -0.0302491 0.1120093 0.1102659 This work

c6
00202 -0.0302491 -0.0297803 0.1102659 This work

c6
22002 0.0546242 0 0 This work

c6
00222 0.0546242 0.0554190 0 This work

c6
22224 0.0081206 0 0 This work

C6
00000 48.79 31.63 20.75 MBPT [18]

c6
20002 0.006 0.173 MBPT [18]

c6
00202 0.169 MBPT [18]

c6
00222 0.130 0.130 MBPT [18]

C6
00000 46.433 MBPT [19]

c6
22002 0.0647 MBPT [19]

c6
22224 0.0112 MBPT [19]

C6
00000 43.17 LB94 [20]

c6
22002 0.077 LB94 [20]

c6
22224 0.016 LB94 [20]
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5 Conclusion

The method discussed in this paper is the natural extension

of Full CI to the domain of intermolecular interactions and,

as such, it shares the virtues and limitations of Full CI.

The method here discussed has the following advanta-

ges: (1) it provides variational upper and lower bounds to

the intermolecular matrix elements and therefore it allows

for convergence control; (2) it is computationally efficient

and provides faster convergence w.r.t. numerical Casimir-

Polder.

On the other hand, the method is at the moment

implemented in a Full CI code, although all its mathe-

matical structure is not limited to Full CI. This means that

it can be used to compute benchmark values for small

molecules and/or with small AO sets. As concerns the

comparison with Casimir-Polder, it should be remarked

that the latter is not limited to CI contexts and this allows

the use of much larger AO sets on much larger molecules.
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Appendix 1

Strictly speaking, Eq. 1 has an infinity of solutions, since to

any given solution U1ab
AB we can add products of the type U0

Af B

and gA U0
B, where f B and gA are arbitrary functions, and get

another solution. The dispersion solution is characterized by

a kind of strong orthogonality to the ground state eigenvec-

tors of molecule A and B, as clearly shown by the London

sum-over-states representation given in Eq. 2:
Z

A

UAB
1abU

A
0 dVA ¼

Z

B

UAB
1abU

B
0 dVB ¼ 0

Equivalently, we can define U1ab
AB to be the solution of

minimal norm of Eq. 1. As far as Eq. 11 is concerned, one

has the conditions:

vA
0 X ¼ 0B ¼ 0; XðvB

0 Þ
T ¼ ð0AÞT

where v0
A, v0

B are the Full CI ground state eigenvectors of

molecule A, B, respectively, and 0A, 0B are zero vectors.

Consequently, the expansion vectors should fulfill the

orthogonality requirements:

ðzA
i Þ

T vA
0 ¼ ðzB

j Þ
T vB

0 ¼ 0:

Appendix 2

For reader’s convenience we report here the explicit for-

mulae used to compute the dispersion coefficients from the

cartesian matrix elements:

C00000
6 ¼ 2

3
hxxjxxi� þ hxyjxyi� þ hxzjxzi�
�

þhyxjyxi� þ hyyjyyi� þ hyzjyzi�
þhzxjzxi� þ hzyjzyi� þ hzzjzzi�

�

C20002
6 ¼�

ffiffiffi
5
p

3
hxxjxxi� þ hxyjxyi� þ hxzjxzi�
�

þhyxjyxi� þ hyyjyyi�hyzjyzi�
�2ðhzxjzxi� þ hzyjzyi� þ hzzjzzi�Þ

�

C22002
6 ¼

ffiffiffi
5

6

r

hxxjxxi� þ hxyjxyi� þ hxzjxzi�
�

�ðhyxjyxi� þ hyyjyyi� þ hyzjyzi�Þ
�

C22224
6 ¼ 27

ffiffiffiffiffi
70
p hxxjxxi� � hxyjxyi� � hyxjyxi� þ hyyjyyi�

� �

in the notation defined by Eq. 5.
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